Energetic Plasticity Underlies a Variable Response to Ocean Acidification in the Pteropod, Limacina helicina antarctica

نویسندگان

  • Brad A. Seibel
  • Amy E. Maas
  • Heidi M. Dierssen
چکیده

Ocean acidification, caused by elevated seawater carbon dioxide levels, may have a deleterious impact on energetic processes in animals. Here we show that high PCO(2) can suppress metabolism, measured as oxygen consumption, in the pteropod, L. helicina forma antarctica, by ∼20%. The rates measured at 180-380 µatm (MO(2)  =  1.25 M(-0.25), p  =  0.007) were significantly higher (ANCOVA, p  =  0.004) than those measured at elevated target CO(2) levels in 2007 (789-1000 µatm,  =  0.78 M(-0.32), p  =  0.0008; Fig. 1). However, we further demonstrate metabolic plasticity in response to regional phytoplankton concentration and that the response to CO(2) is dependent on the baseline level of metabolism. We hypothesize that reduced regional Chl a levels in 2008 suppressed metabolism and masked the effect of ocean acidification. This effect of food limitation was not, we postulate, merely a result of gut clearance and specific dynamic action, but rather represents a sustained metabolic response to regional conditions. Thus, pteropod populations may be compromised by climate change, both directly via CO(2)-induced metabolic suppression, and indirectly via quantitative and qualitative changes to the phytoplankton community. Without the context provided by long-term observations (four seasons) and a multi-faceted laboratory analysis of the parameters affecting energetics, the complex response of polar pteropods to ocean acidification may be masked or misinterpreted.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poles Apart: The “Bipolar” Pteropod Species Limacina helicina Is Genetically Distinct Between the Arctic and Antarctic Oceans

The shelled pteropod (sea butterfly) Limacina helicina is currently recognised as a species complex comprising two sub-species and at least five "forma". However, at the species level it is considered to be bipolar, occurring in both the Arctic and Antarctic oceans. Due to its aragonite shell and polar distribution L. helicina is particularly vulnerable to ocean acidification. As a key indicato...

متن کامل

Southern Ocean pteropods at risk from ocean warming and acidification

Early life stages of marine calcifiers are particularly vulnerable to climate change. In the Southern Ocean aragonite undersaturation events and areas of rapid warming already occur and are predicted to increase in extent. Here, we present the first study to successfully hatch the polar pteropod Limacina helicina antarctica and observe the potential impact of exposure to increased temperature a...

متن کامل

Impact of aragonite saturation state changes on migratory pteropods.

Thecosome pteropods play a key role in the food web of various marine ecosystems and they calcify, secreting the unstable CaCO(3) mineral aragonite to form their shell material. Here, we have estimated the effect of ocean acidification on pteropod calcification by exploiting empirical relationships between their gross calcification rates (CaCO(3) precipitation) and aragonite saturation state Ω(...

متن کامل

Additive effects of pCO2 and temperature on respiration rates of the Antarctic pteropod Limacina helicina antarctica

The Antarctic pteropod, Limacina helicina antarctica, is a dominant member of the zooplankton in the Ross Sea and supports the vast diversity of marine megafauna that designates this region as an internationally protected area. Here, we observed the response of respiration rate to abiotic stressors associated with global change-environmentally relevant temperature treatments (-0.8°C, 4°C) and p...

متن کامل

Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth

Due to their aragonitic shell, thecosome pteropods may be particularly vulnerable to ocean acidification driven by anthropogenic CO2 emissions. This applies specifically to species inhabiting Arctic surface waters that are projected to become temporarily and locally undersaturated with respect to aragonite as early as 2016. This study investigated the effects of rising partial pressure of CO2 (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012